2,840 research outputs found

    Effective mass theory of monolayer \delta-doping in the high-density limit

    Full text link
    Monolayer \delta-doped structures in silicon have attracted renewed interest with their recent incorporation into atomic-scale device fabrication strategies as source and drain electrodes and in-plane gates. Modeling the physics of \delta-doping at this scale proves challenging, however, due to the large computational overhead associated with ab initio and atomistic methods. Here, we develop an analytical theory based on an effective mass approximation. We specifically consider the Si:P materials system, and the limit of high donor density, which has been the subject of recent experiments. In this case, metallic behavior including screening tends to smooth out the local disorder potential associated with random dopant placement. While smooth potentials may be difficult to incorporate into microscopic, single-electron analyses, the problem is easily treated in the effective mass theory by means of a jellium approximation for the ionic charge. We then go beyond the analytic model, incorporating exchange and correlation effects within a simple numerical model. We argue that such an approach is appropriate for describing realistic, high-density, highly disordered devices, providing results comparable to density functional theory, but with greater intuitive appeal, and lower computational effort. We investigate valley coupling in these structures, finding that valley splitting in the low-lying \Gamma band grows much more quickly than the \Gamma-\Delta band splitting at high densities. We also find that many-body exchange and correlation corrections affect the valley splitting more strongly than they affect the band splitting

    Ground-layer wavefront reconstruction from multiple natural guide stars

    Get PDF
    Observational tests of ground layer wavefront recovery have been made in open loop using a constellation of four natural guide stars at the 1.55 m Kuiper telescope in Arizona. Such tests explore the effectiveness of wide-field seeing improvement by correction of low-lying atmospheric turbulence with ground-layer adaptive optics (GLAO). The wavefronts from the four stars were measured simultaneously on a Shack-Hartmann wavefront sensor (WFS). The WFS placed a 5 x 5 array of square subapertures across the pupil of the telescope, allowing for wavefront reconstruction up to the fifth radial Zernike order. We find that the wavefront aberration in each star can be roughly halved by subtracting the average of the wavefronts from the other three stars. Wavefront correction on this basis leads to a reduction in width of the seeing-limited stellar image by up to a factor of 3, with image sharpening effective from the visible to near infrared wavelengths over a field of at least 2 arc minutes. We conclude that GLAO correction will be a valuable tool that can increase resolution and spectrographic throughput across a broad range of seeing-limited observations.Comment: 25 pages, 8 figures, to be published in Astrophys.

    Development and validation of a solid phase extraction sample cleanup procedure for the recovery of trace levels of nitro-organic explosives in soil

    Get PDF
    An improved cleanup method has been developed for the recovery of trace levels of 12 nitro-organic explosives in soil, which is important not only for the forensic community, but also has environmental implications. A wide variety of explosives or explosive-related compounds were evaluated, including nitramines, nitrate esters, nitroaromatics, and a nitroalkane. Fortified soil samples were extracted with acetone, processed via solid phase extraction (SPE), and then analyzed by gas chromatography with electron capture detection. The following three SPE sorbents in cartridge format were compared: EmporeTM SDB-XC, Oasis HLB, and Bond Elut NEXUS cartridges. The NEXUS cartridges provided the best overall recoveries for the 12 explosives in potting soil (average 48%) and the fastest processing times (\u3c30 min). It also rejected matrix components from spent motor oil on potting soil. The SPE method was validated by assessing limit of detection (LOD), processed sample stability, and interferences. All 12 compounds were detectable at 0.02 mg explosive/gram of soil or lower in the three matrices tested (potting soil, sand, and loam) over three days. Seven explosives were stable up to seven days at 2 mg/g and three were stable at 0.2 mg/g, both in processed loam, which was the most challenging matrix. In the interference study, five interferences above the determined LOD for soil were detected in matrices collected across the United States and in purchased all-purpose sand, potting soil, and loam. This represented a 3.2% false positive rate for the 13 matrices processed by the screening method for interferences. The reported SPE cleanup method provides a fast and simple extraction process for separating organic explosives from matrix components, facilitating sample throughput and reducing instrument maintenance. In addition, a comparison study of the validated SPE method versus conventional syringe filtration was completed and highlighted the benefits of sample cleanup for removing matrix interferences, while also providing lower supply cost, order of magnitude lower LODs for most explosives, higher percent recoveries for complex matrices, and fewer instrument maintenance issues

    Development and validation of a solid phase extraction sample cleanup procedure for the recovery of trace levels of nitro-organic explosives in soil

    Get PDF
    An improved cleanup method has been developed for the recovery of trace levels of 12 nitro-organic explosives in soil, which is important not only for the forensic community, but also has environmental implications. A wide variety of explosives or explosive-related compounds were evaluated, including nitramines, nitrate esters, nitroaromatics, and a nitroalkane. Fortified soil samples were extracted with acetone, processed via solid phase extraction (SPE), and then analyzed by gas chromatography with electron capture detection. The following three SPE sorbents in cartridge format were compared: EmporeTM SDB-XC, Oasis HLB, and Bond Elut NEXUS cartridges. The NEXUS cartridges provided the best overall recoveries for the 12 explosives in potting soil (average 48%) and the fastest processing times (\u3c30 min). It also rejected matrix components from spent motor oil on potting soil. The SPE method was validated by assessing limit of detection (LOD), processed sample stability, and interferences. All 12 compounds were detectable at 0.02 mg explosive/gram of soil or lower in the three matrices tested (potting soil, sand, and loam) over three days. Seven explosives were stable up to seven days at 2 mg/g and three were stable at 0.2 mg/g, both in processed loam, which was the most challenging matrix. In the interference study, five interferences above the determined LOD for soil were detected in matrices collected across the United States and in purchased all-purpose sand, potting soil, and loam. This represented a 3.2% false positive rate for the 13 matrices processed by the screening method for interferences. The reported SPE cleanup method provides a fast and simple extraction process for separating organic explosives from matrix components, facilitating sample throughput and reducing instrument maintenance. In addition, a comparison study of the validated SPE method versus conventional syringe filtration was completed and highlighted the benefits of sample cleanup for removing matrix interferences, while also providing lower supply cost, order of magnitude lower LODs for most explosives, higher percent recoveries for complex matrices, and fewer instrument maintenance issues

    Arctic system on trajectory to new state

    Get PDF
    The Arctic system is moving toward a new state that falls outside the envelope of glacial-interglacial fluctuations that prevailed during recent Earth history. This future Arctic is likely to have dramatically less permanent ice than exists at present. At the present rate of change, a summer ice-free Arctic Ocean within a century is a real possibility, a state not witnessed for at least a million years. The change appears to be driven largely by feedback-enhanced global climate warming, and there seem to be few, if any processes or feedbacks within the Arctic system that are capable of altering the trajectory toward this “super interglacial” state

    Effect of DNA Repair Protein Rad18 on Viral Infection

    Get PDF
    Host factors belonging to the DNA repair machineries are assumed to aid retroviruses in the obligatory step of integration. Here we describe the effect of DNA repair molecule Rad18, a component of the post-replication repair pathway, on viral infection. Contrary to our expectations, cells lacking Rad18 were consistently more permissive to viral transduction as compared to Rad18(+/+) controls. Remarkably, such susceptibility was integration independent, since retroviruses devoid of integration activity also showed enhancement of the initial steps of infection. Moreover, the elevated sensitivity of the Rad18(−/−) cells was also observed with adenovirus. These data indicate that Rad18 suppresses viral infection in a non-specific fashion, probably by targeting incoming DNA. Furthermore, considering data published recently, it appears that the interactions between DNA repair components with incoming viruses, often result in inhibition of the infection rather than cooperation toward its establishment

    Testing angular velocity as a new metric for metabolic demands of slow-moving marine fauna: a case study with Giant spider conchs Lambis truncata

    Get PDF
    BackgroundQuantifying metabolic rate in free-living animals is invaluable in understanding the costs of behaviour and movement for individuals and communities. Dynamic body acceleration (DBA) metrics, such as vectoral DBA (VeDBA), are commonly used as proxies for the energy expenditure of movement but are of limited applicability for slow-moving species. It has recently been suggested that metrics based on angular velocity might be better suited to characterise their energetics. We investigated whether a novel metric—the ‘Rate of change of Rotational Movement (RocRM)’, calculated from the vectoral sum of change in the pitch, roll and yaw/heading axes over a given length of time, is a suitable proxy for energy expenditure.ResultsWe found that RocRM can be used as an alternative energy expenditure proxy in a slow-moving benthic invertebrate. Eleven Giant spider conchs Lambis truncata (collected in the Red Sea) were instrumented with multiple channel (Daily Diary) tags and kept in sealed chambers for 5 h while their oxygen consumption, V̇O2, was measured. We found RocRM to be positively correlated with V̇O2, this relationship being affected by the time-step (i.e. the range of the calculated differential) of the RocRM. Time steps of 1, 5, 10 and 60 s yielded an explained variability of between 15 and 31%. The relationship between V̇O2 and VeDBA was not statistically significant, suggesting RocRM to provide more accurate estimations of metabolic rates in L. truncata.ConclusionsRocRM proved to be a statistically significant predictor of V̇O2 where VeDBA did not, validating the approach of using angular-based metrics over dynamic movement-based ones for slower moving animals. Further work is required to validate the use of RocRM for other species, particularly in animals with minimally dynamic movement, to better understand energetic costs of whole ecosystems. Unexplained variability in the models might be a consequence of the methodology used, but also likely a result of conch activity that does not manifest in movement of the shell. Additionally, density plots of mean RocRM at each time-step suggest differences in movement scales, which may collectively be useful as a species fingerprint of movement going forward
    corecore